

G5B. EQUILIBRIO IÓNICO - ÁCIDOS Y BASES

SOLUCIONES DE ÁCIDOS Y BASES FUERTES

- 1) Explicar los conceptos de:
 - a) electrolito fuerte y electrolito débil
- b) grado de disociación electrolítica

c) producto iónico del agua

- d) pH y pOH.
- 2) ¿De qué depende el valor del grado de disociación electrolítica? ¿cuál es su valor para un electrolito débil en solución infinitamente diluida?
- **3)** Calcular los valores de pH a 25°C de las soluciones acuosas cuyas condiciones están definidas por los siguientes datos:
 - a) $[H_3O^+] = 1 \times 10^{-3} \text{ mol/L}$

b) $[H_3O^+] = 1 \times 10^{-7} \text{ mol/L}$

c) $[H_3O^+] = 3 \times 10^{-5} \text{ mol/L}$

d) $[H_3O^+] = 5 \times 10^{-7} \text{ mol/L}$

e) $[HO^{-}] = 1 \times 10^{-9} \text{ mol/L}$

f) $[HO^{-}] = 2,5 \times 10^{-5} \text{ mol/L}$

Indicar en cada caso si se trata de medio neutro, ácido o básico.

Respuesta: a) pH = 3 b) pH = 7 c) pH =
$$4,5$$
 d) pH = $6,3$ e) pH = 5 f) pH = $9,4$

- **4)** Calcular el pH y el pOH a 25°C de las siguientes soluciones acuosas considerando que el grado de disociación (α) es 1:
 - a) HCl 0,1 N

b) HCl 10⁻³ M

c) H₂SO₄ 0,03 N

d) $H_2SO_4 1 \times 10^{-3} M$

e) NaOH 0,15 N

f) KOH 1×10⁻³ N

g) Ca(OH)₂ 0,1 M.

5) Se prepara una solución de HCl cuya composición es de 0,18 g de soluto por 100 cm³ de solución. Calcular el pH de dicha solución.

Respuesta: pH = 1,3

- 6) Se prepara una solución de H_2SO_4 de pH = 3 a 25°C. Considerar α = 1 para las dos disociaciones del ácido.
 - a) Escribir la ecuación de disociación electrolítica
 - **b)** Calcular la molaridad de H₃O⁺, la normalidad de H₂SO₄ y la molaridad de H₂SO₄.

c) Calcular los gramos de H₂SO₄ por cada 100 cm³ de solución.

Respuesta: b) Molar. $H_3O^+ = 1 \times 10^{-3} \text{ M}$; Norm. $H_2SO_4 = 1 \times 10^{-3} \text{ N}$; Molar. $H_2SO_4 = 5 \times 10^{-4} \text{ M}$ c) $5 \times 10^{-3} \text{ g}$ c/100cm³

- 7) Se prepara una solución de Ba(OH)₂ de pH = 12 a 25°C. Considerar α = 1 para las dos disociaciones de la base.
 - a) Escribir la ecuación de disociación electrolítica
 - b) Calcular la molaridad de OH⁻, la normalidad de Ba(OH)₂ y la molaridad de Ba(OH)₂.
 - c) Calcular los gramos de Ba(OH)₂ por cada litro de solución.

Respuesta: b) Molar. OH⁻ = 1×10^{-2} M; Norm. Ba(OH)₂ = 1×10^{-2} N; Molar. Ba(OH)₂ = 5×10^{-3} M c) 0,856 g c/litro

ÁCIDOS Y BASES DÉBILES. EQUILIBRIO IÓNICO.

- 8) El ácido acético (CH₃COOH) y el amoníaco (NH₃) son dos electrolitos débiles.
 - a) ¿Qué solución acuosa será más básica, NaOH 0,1 M o NH₃ 0,1 M?
 - b) ¿Qué solución acuosa será más ácida, HCl 0,1 M o CH₃COOH 0,1 M?
 - c) Ordenar por orden creciente de pH las soluciones de a) y b).

Nota: Recordar que: NH_3 (ac) + H_2O (I) $\rightleftharpoons NH_4^+$ (ac) + OH^- (ac)

Respuesta: a) NaOH 0,1 M será más básica b) HCl 0,1 M será más ácida c) HCl 0,1 M \rightarrow CH₃COOH 0,1 M \rightarrow NH₃ 0,1 M \rightarrow NaOH 0,1 M

- **9)** Una solución acuosa de un ácido monoprótico débil de concentración 3×10⁻² M está disociado en un 12% a 25 °C.
 - a) Plantear los equilibrios presentes con sus constantes y los balances de especies y de cargas.
 - **b)** Calcular el pH de la solución.
 - c) Calcular la constante de disociación ácida (Ka).

Respuesta: b) pH = 2,44 c) Ka = $4,91 \times 10^{-4}$

- **10)** Una solución acuosa de ácido metanoico (fórmico), cuya constante de disociación (Ka) es $1,77 \times 10^{-4}$, tiene un grado de disociación (α) de 0,0412 a 25°C.
 - a) Plantear los equilibrios presentes con sus constantes y los balances de especies y de cargas.
 - b) Calcular la concentración analítica del ácido.
 - c) Calcular el pH de la solución
 - d) ¿Qué volumen de ácido metanoico 1 M y de agua habrá que tomar para preparar 100 ml de la solución del ejercicio?

Respuesta: b) 0,1 M c) pH =2,39 d) 10 ml de ácido y 90 ml de agua.

- 11) Se prepara una solución de ácido nitroso de concentración 0,47 % m/v (0,47 g de soluto en 100 ml de solución), cuya constante de disociación (Ka) es $5,0 \times 10^{-4}$ a $25 ^{\circ}$ C.
 - a) Plantear los equilibrios presentes con sus constantes y los balances de especies y de cargas.
 - b) Calcular el pH de la solución
 - c) Calcular el grado de disociación (α).

Respuesta: b) pH = 2,15 c) α = 7,07×10⁻²

- **12)** Una solución de ácido cloroacético o cloroetanoico de concentración 0,01 M se encuentra disociada en un 31% a 25°C.
 - a) Plantear los equilibrios presentes con sus constantes y los balances de especies y de cargas
 - b) Calcular el pH de la solución
 - c) Calcular la constante de disociación ácida (Ka)

Respuesta: b) pH = 2,5 c) Ka = $1,39 \times 10^{-3}$

- **13)** Se prepara una solución disolviendo 0,52 mol de una base de fórmula genérica MeOH en agua hasta obtener 6 L de solución. Con un pHmetro se determina que el pH de la solución es de 12 a 25°C.
 - a) Calcular la constante de disociación básica (Kb).
 - **b)** Calcular el grado de disociación (α).

Respuesta: a) Kb= 1.3×10^{-3} b) $\alpha = 0.115$

- **14)** El vinagre común es una solución de ácido acético (etanoico) de concentración 5% m/m. La densidad del vinagre es 1 g/cm³ y la constante de disociación del ácido acético es 1,8×10⁻⁵.
 - a) Calcular el pH del vinagre y el porcentaje de disociación.
 - b) Calcular el pH y el porcentaje de disociación de una dilución volumétrica al 10% del vinagre original.
 - c) ¿Qué tendencia se observa en el grado de ionización al producir una dilución?

Respuesta: a) pH= 2,41; % de disoc. = 0,47% b) pH= 2,91; % de disoc. = 1,47%

- **15)** Se prepara una solución de NH_3 en agua. El pH de la solución es 12 y la constante de disociación básica del NH_3 es 1.8×10^{-5} a 25°C.
 - a) Calcular los moles de NH₃ disueltos por litro de agua.
 - **b)** Calcular la constante de disociación básica (Kb).

Respuesta: a) 5,56 mol de NH₃ b) α = 0,0018

16) Se prepara una solución de etilamina ($C_2H_5NH_2$) de concentración analítica 0,02 M, cuya constante de disociación básica (Kb) es 5,62×10⁻⁴ a 25°C.

- a) Calcular la concentración de todas las especies presentes en el equilibrio (etilamina, etilamonio, hidronios e hidroxilos).
- b) Calcular el pH de la solución.
- **c)** Calcular el grado de disociación (α).

<u>Respuesta:</u> a) $[C_2H_5NH_2]_{eq} = 0.0169 \text{ M}$; $[C_2H_5NH_3^+]_{eq} = [OH^-] = 3.08 \times 10^{-3} \text{ M}$; $[H_3O^+] = 3.25 \times 1.0^{-12} \text{ M}$ b) pH = 11,49 c) $\alpha = 0.0154$

- 17) Una solución de metilamina tiene un pH de 10,93 y un porcentaje de disociación de 33,9% a 25°C.
 - a) Escribir la ecuación de disociación de la metilamina en agua.
 - b) Calcular la concentración inicial o analítica de la solución.
 - c) Calcular la constante de disociación ácida (Kb)
 - d) Calcular la concentración de todas las especies presentes en el equilibrio (metilamina, metilamonio, hidronios e hidroxilos).

Respuesta: b) $[CH_3NH_2]_A = 2.51 \times 10^{-3} \text{ M}$ **c)** $Kb = 2.88 \times 10^{-4}$ **d)** $[CH_3NH_2]_{eq} = 1.67 \times 10^{-3}$; $[CH_3NH_3^+] = [OH^-] = 8.51 \times 10^{-4}$ M; $[H_3O^+] = 1.17 \times 10^{-11}$ M.

- 18) Indicar si las siguientes proposiciones son verdaderas o falsas, justificando en cada caso su respuesta.
 - a) El agua se comporta como un ácido en el proceso de ionización del amoníaco.
 - b) El pH de una solución de un ácido fuerte siempre es menor que el de una solución de un ácido débil.
 - c) Cuanto más se diluye una solución de un ácido mayor es su pH, siendo el máximo valor alcanzable el de pH = 7.
 - d) Cuanto más se diluye una solución de una base mayor es su pH, siendo el máximo valor alcanzable el de pH = 14.
 - e) Cuanto mayor es el pKa de un ácido, más fuerte es el mismo.
 - f) Dadas dos soluciones de dos bases débiles de igual concentración molar, la de mayor Kb tendrá mayor pH.
 - g) Una solución de ácido débil nunca podrá tener un pH inferior a una solución de un ácido fuerte.
 - h) Para bajar en una unidad el pH de una solución de una base fuerte hay que diluirla 10 veces.
 - i) Para bajar en una unidad el pH de una solución de una base débil hay que diluirla 10 veces.
 - j) Cuanto más básica es una solución, mayor es su pOH.
 - k) Cuanto menor es la Ka de un ácido, más débil es el mismo.
 - 1) Dos ácidos fuertes monopróticos de igual concentración molar tienen el mismo pH.
 - m) Cuanto mayor es el pKb de una base, más débil es la misma.

Respuesta: a) \vee b) F c) \vee d) F e) F f) \vee g) F h) \vee i) F j) F k) \vee l) \vee m) \vee

MEZCLAS, HIDROLISIS Y TITULACIÓN

- **19)** Se producen las siguientes mezclas de soluciones:
 - i) 200 cm³ de solución 0,05 M de ácido sulfúrico con 40 cm³ de solución 0,5 M de hidróxido de sodio.
 - ii) 400 cm³ de solución 0,5 M de ácido sulfúrico con 600 cm³ de solución 0,3 M de hidróxido de sodio.
 - a) Escribir las ecuaciones químicas (molecular, iónica neta y iónica completa) que representan las reacciones ocurridas en i) y ii).
 - **b)** Calcular el pH resultante de las mezclas i) y ii).

NOTA: Suponer $\alpha = 1$ para todos los electrolitos presentes y volúmenes aditivos.

Respuesta: b) pH mezcla i) = 7,0; pH mezcla ii) = 0,65

- **20)** Se tienen 0,5 L de una solución de HCl de pH = 3. Se necesita aumentar la acidez hasta alcanzar un pH = 2.
 - a) Calcular el volumen de solución de H₂SO₄ 0,1 M que hay que agregar para alcanzar el pH deseado.
 - b) Si se quiere disminuir el pH de 2 a 1, ¿se requerirá el mismo volumen o no? ¿por qué?

NOTA: Suponer $\alpha = 1$ y volúmenes aditivos.

Respuesta: a) 24 cm³ b) No, se requiere un volumen distinto

- 21) Se tienen 1,5 L de una solución de HCl de pH = 1. Se necesita disminuir la acidez hasta alcanzar un pH = 3.
 - a) Calcular el volumen de solución de Ca(OH)₂ 0,3 M que hay que agregar para alcanzar el pH deseado.

NOTA: Suponer $\alpha = 1$ y volúmenes aditivos.

Respuesta: b) 247 cm³

22) Calcular el volumen de solución de KOH 0,15 N necesaria para valorar 15 ml de H₂SO₄ 0,05 M.

Respuesta: 10 ml

- **23)** Para las siguientes diluciones o mezclas de soluciones:
 - i) 2 L de HCl 0,03 M (α = 1) y 1 l de agua
 - ii) 2 L de HCl 0,03 M (α = 1) y 1 L de NaOH 0,03 M (α = 1)
 - iii) 2 L de H_2SO_4 0,03 M (α = 1) y 1 L de KOH 0,03 M (α = 1)
 - iv) 2 L de ác. acético 0,03 M (Ka = 1.8×10^{-5}) y 1 L de agua
 - **v)** 2 L de NH₃ 0,03 M (Kb = 1.8×10^{-5}) y 1 L de agua.
 - a) Escribir las ecuaciones de disociación o reacción para cada dilución o mezcla.
 - **b)** Calcular el pH resultante de las diluciones o mezclas.

c) En cada caso, indicar que color tomará cada uno de los siguientes indicadores, para los cuales se indica el valor de su pKa y los colores de la forma acida y básica respectivamente.

Alizarina: pKa = 11,7, rojo-violeta; Azul de timol: pKa = 8.9, amarillo-azul; Anaranjado de metilo: pKa = 3,4, rojo-amarillo.

<u>Respuesta:</u> b) pH i) = 1,7; pH ii) = 2,0; pH iii) = 1,52; pH iv) = 3,22; pH v) = 10,78

- **24)** Una damajuana contiene ácido clorhídrico concentrado y se quiere determinar con exactitud su concentración. Para ello se siguen los pasos detallados a continuación:
 - 1 Toma de muestra de la damajuana.
 - 2 Dilución 1/50 (relación en volumen) de la muestra.
 - 3 Titulación de 15 cm³ de la dilución con hidróxido de sodio 0,05 M, consumiéndose 30 cm³ de la base.
 - a) Calcular la concentración de ácido en la damajuana.

Respuesta: a) [HCI] = 5,0 M

- **25)** Una muestra de 26,2 cm³ de jugo gástrico humano (δ = 1,26 kg/l) se diluye a 100 cm³. Se toman 20 cm³ de esa dilución y se titulan con hidróxido de sodio 0,0618 N, gastándose 16,18 cm³ de la base.
 - a) Calcular el % m/m de ácido clorhídrico en el jugo gástrico
 - b) Calcular el pH del jugo gástrico

Respuesta: a) [HCl] = 0.55% b) pH = 0.72

- **26)** Escribir las ecuaciones iónicas de hidrólisis (cuando correspondan) para las siguientes sales, y estime si sus soluciones acuosas serán ácidas, básicas o neutras, justificando su respuesta.
 - a) H₃CCOONa

b) NH₄CN

c) NaSO₄

d) Na₃PO₄

e) KCI

f) NH₄NO₃